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atom coordinates in non-centrosymmetr ic  i somorphs  
of  proteins as revealed by Bricogne (1984). From 
(13c) and (14), it is evident that (13a), (15) and (17) 
are also obta ined by using only a subset of  observa- 
tions composed  of pobs and the total backgrounds  
BObS 

i " 

The fraction of  p o b s  pcalc which is at tr ibuted to 
the background intensity according to (15) increases 
with decreasing ratio of  peak- to-background 
intensity. As expected, it reaches large values for very 
weak Bragg reflections. The covariance of  pobs and 
B °bs is normal ly  a negative quantity. Thus,  i f  p~alc~ 
pobs, then B~alcx B °bs. In the following example ,  we 
assume that the variances of the observed intensities 
are derived from Poisson statistics, s ( Q i ) = Q  °bs, 
s(Li) = _,I °bs, s (Hi)  = ..,H °bs and s ( Q i L i ) = s ( Q i H , ) =  
s(LiHi) =0 .  We also assume li = hi =2 .  In terms of  
the ratio of  integrated intensity to total background 

I lObS 4- h/4°bs~ gi = QObS/(.i_i --.-i-- i ,, one obtains 

Bobs /~calc i ----i = --[2/(gi-t- 2)]( pobs_ p c.alc). 

The fractions of  pobs_ pcalc A~ attributed to the back- 
ground are 2, 17, 67 and 100% for gi-- 100, 10, 1 and 
0, respectively. Negative net intensities imply  gi < 1. 

The model  for the background intensities that we 
have used might  be described as the independent 
background model,  in which each and every reflection 

has its own independen t  variable parameters  quan-  
t ifying both  the low-and high-angle backgrounds.  A 
large n u m b e r  of  variable parameters  results but  the 
total background  is readily est imated using (15). 
Alternatively,  the background  might be represented 
by some more elaborate model  in terms of  a few 
variable global  parameters.  There is a risk of  introduc- 
ing addi t ional  model l ing  error, but the n u m b e r  of  
variables is cons iderably  reduced. Once a suitable 
model  has been found,  it is easily in t roduced in (5) 
and the setting up of  the corresponding normal  
equations is straightforward.  However, we note that 
the structural parameters  Um and the parameters  
describing the background are correlated and should 
be refined together. We do not r ecommend  fitting the 
background intensit ies to their  observed values first 
and then subtracting the resulting calculated back- 
grounds from the integrated scan intensities to obtain 
net intensities since the errors of  such net intensit ies 
are correlated. 
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Abstract 

The application of the multislice approach of Cowley & 
Moodie [Acta Cryst. (1959), 12, 353-359] to reflection high- 
energy electron diffraction (RHEED) may suffer from edge 
effects which continuously degrade the edge of the unit cell 
and prevent stationary solutions from being obtained for 
RHEED. The reason for this is that it is difficult to simulate 
a tilted infinite plane wave for the beam geometry of 
RHEED in a finite unit cell. It is shown that this can be 
done with a simple edge-patching method. It is then possible 
to obtain an infinitely convergent stationary solution for an 
arbitrary surface in RHEED within a finite unit cell. 

The arrangement of the artificial supercell for the simulation 
of RHEED patterns (Peng & Cowley, 1986) using the 

* Present address: Department of Physics, University of Oslo, PO 
Box 1048 Blindern, 0316 Oslo 3, Norway. 

Cowley-Moodie multislice approach (Cowley & Moodie, 
1959) is similar to that used for the simulation of profile 
images in high-resolution electron microscopy (HREM). 
The unit cell is split into two parts, the first is a vacuum 
and the second contains atoms that comprise the crystal 
surface. The difference is that, for profile imaging, the 
incident plane wave is not tilted as much and illuminates 
the whole unit cell, while for the simulation of RHEED it 
is more tilted and only illuminates the vacuum part of the 
unit cell. If we have a propagator with a fixed slice thickness 
and an empty phase grating, the result of each iteration is 
simply to add a constant phase term to the initial incident 
wave function, which resulted from the convolution of the 
incident-wave function with a fixed propagation function. 
This phase term can be easily calculated either analytically 
or numerically. For the simulation of RHEED patterns, the 
phase grating in the edge area of the vacuum part of each 
unit cell is empty since the surface potential exponentially 
decays to near zero into the vacuum. Therefore, in this edge 
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area, the multislice iteration does nothing more than con- 
tinuously introduce a constant phase increment to the 
initially tilted incident plane wave. However, since the 
incident plane wave is artificially cut off at the edge of the 
unit cell near A in Fig. l(i) because of the limited cell size 
(and also tilted), the edge will move towards the crystal 
surface and degrade the solution before it becomes station- 
ary. The boundary of the artificial computational superlat- 

tice thus becomes the source of an unwanted set of Fresnel 
fringes (edge movement),  which encroaches on the crystal. 
Theoretically, one can always make the unit cell large 
enough to delay this deterioration process, but this is 
impractical in many circumstances, especially when simu- 
lating surface imperfections. It should be noted that this 
edge-deterioration process is not the result of imposing 
Bloch-like periodic boundary conditions in the multislice 
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Fig. 1. (i) Wave fields calculated for the 2 x 2 Au(002) surface using the new method. The calculation is for 200 keV incident electrons, 
30 mrad incident angle and 10% absorption. The picture shows the electron intensity distribution on a plane normal to the beam 
both outside (from A to B) and inside (from B to C) the crystal. The series of output of slice numbers is 2, 200, 200, 300, 400, 500, 
600, 700, 800, 2200, 2300, 2500, 2700, 2050. The page normal is [020]. (ii) Simulated RHEED patterns corresponding to (i). 
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approach, the effects of which become trivial when absorp- 
tion and a Gaussian smoothed incident plane wave are 
introduced, since both damp the wave field near two ends 
of each slice to zero, so that the periodic boundary interfer- 
ence becomes negligible. 

For the edge area of the vacuum part of each unit cell, 
each multislice iteration is equivalent to adding a constant 
phase term to the incident tilted plane wave in the same 
area. We may therefore always repair this edge area by 
replacing it with the corresponding edge area of a tilted 
incident plane wave as long as the wave function in this 
area is multiplied by a proper phase term which can be 
easily calculated. Thus the small limited patched edge area 
in fact plays the role of an infinite plane-wave source which 
is crucial for obtaining a stationary solution for RHEED. 
It should be pointed out that it is not necessary to repair 
the deteriorated edge often because the moving edge 
seriously deteriorates the solution only after a certain 
number of iterations. Therefore, the computation time does 
not increase significantly due to the 'repairing'. The rate of 
deterioration of the edge depends primarily upon two par- 
ameters, the incident angle (0o) and the slice thickness (Az), 
and the frequency of repairing can be made self-adjustable 
in the program. 

Fig. l(i) shows the results calculated for the 2 x 1 missing 
row reconstruction on the Au(001) surface. All calculation 
conditions are the same as those for Fig. 2(i) in our previous 
paper (Ma & Marks, 1990), except that the edge-patching 
method is used and 2050 iterations are calculated here. The 
surface is set at B and 3/4 of each slice on the left (from 
A to B) contains the vacuum wave and 1/4 of each slice 

on the right (from B to C) contains the crystal wave. The 
beam direction is along [010]. The calculation thickness is 
much thicker than that previously used, up to 2075.5/~,. It 
is infinite theoretically. The last four slices in Fig. l(i) 
demonstrate that the stationary solution for the 2x  1 
Au(001) surface has been obtained. The patched edge area 
only shows the tilted plane-wave component when the 
stationary solution gradually forms in the non-patched-edge 
area. Since the wave front of the Bragg reflected waves 
always moves away from the crystal, the discontinuity 
between these two areas will not affect the final solution as 
long as the continuity of the incident-plane-wave com- 
ponents in these two areas is well preserved. Fig. l(ii) shows 
the RHEED patterns corresponding to Fig. l(i). They are 
Fourier transforms of the vacuum waves excluding the 
patched area in the slices in Fig. l(i). The incident beam 
has been cut off. The reconstruction spots and spots corre- 
sponding to the double period on the 2 x 1 Au(001) surface 
(03) have emerged in the stationary solution shown in the 
last four patterns. 

This work was supported by the National Science 
Foundation, Grant no. DMR 85-20280 and DMR 87-17376. 
The author is very grateful for many useful discussions with 
Professor L. D. Marks about this work. 

References 
COWLEY, J. M. & MOODIE, A. F. (1959). Acta Cryst. 12, 353-359. 
MA, Y. & MARKS, L. D. (1990). Acta Cryst. A46, 594-606. 
PENG, L. M. & COWLEY, J. M. (1986). Acta Cryst. A42, 545-552. 

Acta Cryst. (1991). A47, 139-142 

Observation of nonprojective moir~ fringe patterns produced with an X-ray interferometer. By J. 
YOSHIMURA, Institute of Inorganic Synthesis, Faculty of Engineering, Yamanashi University, Kofu 400, Japan 

(Received 6 December 1989; accepted 12 September 1990) 

Abstract 

Moir6 fringes produced with an X-ray interferometer have 
been found to give an extraordinary nonprojectiveness, an 
oscillatory change of the fringe position along the beam 
paths of the transmitted and the Bragg reflected waves 
behind the interferometer. Densitometric measurements of 
the moir6 fringes showed that, along with the fringe 
position, the fringe profile changes in an unusual 
manner along the beam paths. This nonprojectiveness is 
presumably of the same nature as that observed for moir6 
fringes produced with a bicrystal [Yoshimura (1989). 
J. Phys. Soc. Jpn, 58, 1283-1295]. 

In recent papers (Yoshimura, 1987, 1989), it has been shown 
that X-ray moir6 fringes observed with a bicrystal specimen 
are not exactly the projection of the intensity distribution 
of the wave field on the exit surface of the crystal, but do 
oscillate along the beam paths behind the crystal. This 
nonprojectiveness of moir6 fringes is inexplicable by the 
current theory of moir6 fringes (cf. Yoshimura, 1989) and 
therefore is of interest. In this paper we report a similar 
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fringe oscillation observed for moir6 fringes produced with 
an X-ray interferometer. The present moir6 fringes are 
nearly a parallel moir6 pattern while the previous ones were 
nearly a rotation moir6 pattern. 

The experimental set-up was basically the same as before 
[see Fig. 1 in Yoshimura (1989)]. X-ray topographs of moir6 
patterns were taken with a double-crystal arrangement in 
the parallel setting for Si 220 reflection with Mo Ks  radi- 
ation. An asymmetrically cut collimator crystal was used 
so as to make the angular spread of the incident beam on 
the specimen 0-45". A standard LLL-type X-ray inter- 
ferometer (Bonse & Hart, 1965), about 26 mm long and 
25 mm wide, was mounted on the specimen position instead 
of the bicrystal. The surfaces of the three components of 
the X-ray interferometer were parallel to (111), and their 
thicknesses were 0.8 mm. To produce moir6 patterns, a 
point on the top of the analyzer wafer was locally heated. 
Very thin Pt wires stretched in a frame were placed between 
the specimen and X-ray films so that their shadow images 
gave a standard for position and/or  orientation on the 
topographs. Moir6 patterns were recorded simultaneously 
on three to seven X-ray films placed at different distances 
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